Carbon-Carbon Bond Formation in the Electrochemical Reduction of Carbon Dioxide Catalyzed by a Ruthenium Complex

Hirotaka Nagao, Tetsunori Mizukawa, and Koji Tanaka'

Institute for Molecular Science, Myodaiji, Okazaki 444, Japan

Received September 14, 1993'

A carbonyl ligand of $[Ru(bpy)_2(CO)_2](PF_6)_2$ (1) (bpy = 2,2'-bipyridine) or $[Ru(bpy)(trpy)(CO)](PF_6)_2$ (2) (trpy $= 2,2'$:6',2''-terpyridine) is reversibly converted to hydroxycarbonyl and η ¹-CO₂ moieties by treatment with OH⁻. **1** and **2** also react with NaBH4 to afford CH30H *via* formyl and hydroxymethyl complexes, and the molecular structures of **2** and $\text{[Ru(bpy)}_2(\text{CO})(\text{CH}_2\text{OH})\text{]}$ PF₆ (3) were determined by X-ray structure analysis. Crystal data:
2, C₂₆H₁₉N₅OP₂F₁₂Ru, monoclinic, space group C2/c, $a = 34.683(3)$ Å, $b = 10.168(2)$ Å, 133.35(1)°, $V = 6318(1)$ Å³, $Z = 8$, and $R = 0.046(R_w = 0.060)$ for 5844 data with $F_0 > 3\sigma(F_0)$; 3, $C_{22}H_{19}N_4O_2$ -PF₆Ru, monoclinic, space group C2/c, $a = 30.931(4)$ Å, $b = 7.487(1)$ Å, $c = 24.873(3)$ Å, $\beta = 124.68(1)$ ^o, $V =$ 4736(1) \AA^3 , $Z = 8$, and $R = 0.059$ ($R_w = 0.070$) for 2880 data with $F_o > 3\sigma(F_o)$. The controlled-potential electrolysis of 2 at -1.75 V *vs* Ag Ag^+ in CO₂-saturated C₂H₃OH/H₂O (8:2 v/v) at -20 °C produced HC(O)H, CH₃OH, H(O)CCOOH, and HOCH₂COOH together with CO and HCOOH, while the electrochemical CO₂ reduction in the presence of **1** gave only CO and HCOOH under similar electrolysis conditions. The achievement of the multielectron reduction of CO_2 by 2 as the first example in homogeneous reactions is ascribed to [Ru(bpy)(CFD)]^+ formed by two-electron reduction of **2** in protic media.

Introduction

Much attention has been paid to electrochemical reduction of $CO₂$ as a potential C1 source for chemicals and fuels.^{1,2} A variety of transition metal complexes have been shown to be active as catalyst precursors. The reduction products in those homogeneous reactions, however, have been limited to CO and HCOOH.¹ On the other hand, direct electrochemical reduction of $CO₂$ on a Cu electrode in H₂O affords highly reduced products such as CH₄, $CH₂CH₂$, $C₂H₅OH$, and $C₃H₇OH$ in addition to CO and HCOOH.2f It is, therefore, highly desired to construct a homogeneous reaction system capable of multi-electron reduction of $CO₂$ accompanied by carbon-carbon bond formation to utilize $CO₂$ as a source for other organic products. Both metal-formato and metallocarboxylato complexes have been proposed as reaction intermediates in homogeneous electrochemical $CO₂$ reduction; the former is formed by $CO₂$ insertion into metal-hydride bonds, and the latter is generated by an electrophilic attack of $CO₂$ at low-valent metal centers.^{1e,3} We have reported that $[Ru(bpy)₂$ - $(CO)_2$ ²⁺ exists as an equilibrium mixture with $\left[\text{Ru(bpy)}_2(CO)\right]$ - $(C(O)OH)$ ⁺ and $[Ru(bpy)₂(CO)(\eta^1-CO_2)]$ (eqs 1 and 2) in

$$
[Ru(bpy)2(CO)2]2+ + OH- \rightleftharpoons
$$

$$
[Ru(bpy)2(CO)(C(O)OH)]+ (1)
$$

$$
[Ru(bpy)2(CO)(C(O)OH)]+ + OH- =
$$

[Ru(bpy)₂(CO)(η ¹-CO₂)] + H₂O (2)

aqueous solutions? and those three complexes are involved in the production of CO and HCOOH and in the $CO₂$ carrier in its electro- and photochemical reduction in protic media.5 The reversible conversion between CO and $CO₂$ on Ru is also evidenced by the molecular structures of those complexes.⁶ The smooth conversion from CO₂ to CO *via* C(O)OH on a Ru complex (eqs 1 and 2) implies that reduction and carboxylation of the carbonyl ligated on a Ru has fundamental significance not only for the multi-electron reduction of $CO₂$ but also for carbon-carbon bond formation. This paper describes chemical reactivities of the carbonyl ligands of $\left[\text{Ru(bpy)}_2(\text{CO})_2\right](\text{PF}_6)_2(1)$ and of $\left[\text{Ru(bpy)}_2(\text{CP})_2\right](\text{PF}_7)_2(1)$ $(trpy)(CO)[PF_6]_2$ (2) and the capability for the multi-electron reduction of $CO₂$ by those two complexes. A part of this study has been reported elsewhere.7

Experimental Section

Materials. *cis-* [RuCl₂(bpy)₂].2H₂O, [RuCl(bpy)(trpy)]Cl, [Ru- $(dppe)_{2}(CO)_{2}[(PF_{6})_{2}$ (dppe = 1,2-bis(diphenylphosphino)ethane), and $[Ru(dmpe)₂(CO)₂](PF₆)₂$ (dmpe = 1,2-bis(dimethylphosphino)ethane)

0 1994 American Chemical Society

Abstract published in *Advance ACS Abstracts,* **June- 1, 1994.**

⁽¹⁾ (a) Matsuoka, **S.;** Yamamoto, K.; Ogata, T.; Kusaba, M.; Nakashima, N.; Fijita, E.; Yanagida, **S.** *J. Am. Chem. SOC.* **1993, 115, 601-609.** (b)Tsai, J.-C.; Nicholas, K. M. *J.* Am. *Chem. SOC.* **1992, 114, 5117-** 5124. (c) Arana, C.; Yan, S.; Keshavarz-K., M.; Potts, K. T.; Abruna,
H. D. *Inorg. Chem.* 1992, 31, 3680–3682. (d) Kimura, E.; Bu, X.;
Shionoya, M.; Wada, S.; Maruyama, S. *Inorg. Chem.* 1992, 31, 4542– **4546.** *(e)* Bruce, M. R. M.; Megehee, E.; Sullivan, B. P.; Thorp, H. H.; O'Toole, T. R.; Downard, A.; Pugh, J. R.; Meyer, T. J. *Inorg. Chem.* **1992,31,4864-4873.** *(f)* Christensen,P.; Hamnett, A.; Muir,A. V. G.; Timney, J. A. J. *Chem.* **SOC.,** *Dalton Trans.* **1992,1455-1463. (g)** Ratliff, K. **S.;** Lentz, R. E.; Kubiak, C. P. *Organometallics.* **1992, 11, 1986- 1988.** (h) Graf, E.; Leitner, **W.** *J. Chem. Soc., Chem. Commun.* **1992, 623-624.** (i) Dubois, D. L.; Miedaner, A.; Haltiwanger, R. C. *J. Am. Chem.* **SOC. 1991, 113, 8753-8764.** *6)* Atoguchi, T.; Aramata, A.; Kazusaka, A,; Enyo, M. J. *Chem. SOC., Chem. Commun.* **1991, 156- 157.** (k) Tsai, J. C.; Khan, M. A.; Nicholas, K. M. *Organometallics.* **1991, 10, 29-30.** (I) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. *J.* Am. Chem. Soc. 1991, 113, 343-353. (m) Pugh, J. R.; Bruce, M. R. M.; Sullivan, B. P.; Meyer, **T.** J. *Inorg. Chem.* **1990,30,86-91** and references therein.

⁽²⁾ (a) Ohkawa, K.; Hashimoto, K.; Fujishima, A.;Noguchi, Y.; Nakayama, **S.** *J. Electroanal. Chem.* **1993,345,445-456. (b)** Yoshida, T.; Iida, T.; Shirasagi, T.; Lin, R.-J.; Kaneko, M. *J. Electroanal. Chem.* 1993, 344, 355–362. (c) Naitoh, A.; Ohta, K.; Mizuno, T. *Chem. Express* **1993,**
8,145–148.(d) Fujiwara, M.;Souma, Y. J. *Chem. Soc., Chem. Commun.*
1992, 767–768. (e) Noda, H.; Ikeda, S.; Oda, Y.; Imai, K.; Ito, K. *Bull.*
Chem. So **Takahashi,R.;Suzuki,S.J.** *Chem. Soc.. Chem. Commun.* **1988,17-19. (g)** Willner, I.; Maidan, R.; Mandler, **D.; Durr,** H.; **Dorr,** G.; Zengerle, K. J. Am. *Chem. SOC.* **1987, 109, 6080-6086** and references therein.

⁽³⁾ *Electrochemical and Electrocatalytic Reactions of Carbon Dioxide;* Sullivan, B. P., Krist, K., Guard, H. E., Eds.; Elsevier Science Publishers

BV: Amsterdam, **1993;** p **118-144. (4)** Ishida, H.; Tanaka, K.; Morimoto, M.; Tanaka, T. *Organometallics* **1986, 5, 724–730.**

⁽⁵⁾ (a) Ishida, H.; Tanaka, K.; Tanaka, T. *Organometallics* **1987.5, 181- 186.** (b) **Ishida,H.;Fujiki,K.;Ohba,T.;Ohkubo,K.;Tanaka,K.;Terada,** T.; Tanaka, T. *J. Chem. SOC., Dalton Trans.* **1990, 2155-2160.**

⁽⁶⁾ (a) Tanaka, H.; Nagao, H.; Peng, S.-M.; Tanaka, K. *Organometallics* 1992, 11, 1450–1451. (b) Tanaka, H.; Tzeng, B.-C.; Nagao, H.; Peng, S.-M.; Tanaka, K. *Inorg. Chem.* 1993, 32, 1508–1512.
(7) Nagao, H.; Mizukawa, T.; Tanaka, K. *Chem. Lett.* 1993, 955–958.

were prepared according to the literature methods. $8-10$ Sodium acenaphthylenide was prepared in a THF solution. CH₃CN was distilled over calcium hydride. Gaseous ¹³CO₂ was generated by addition of H_2SO_4 to Ba¹³CO₃ (98 atom %), trapped at 77 K, and then allowed to evaporate slowly by warming to room temperature. Other chemicals were obtained as reagent grade.

PbysicalMeasurements. Infraredspectra wereobtainedona Shimadzu FTIR-8100 spectrophotometer. ¹H and ¹³C NMR were measured on a JEOL EX270 spectrometer. Electronic absorption spectra were measured on a Hewlett Packard 8452A diode array spectrophotometer. FABmass and GC-mass spectra wereobtained on a Shimadzu/Kratos Concept 1s and a Shimadzu GC-mass QP-1000EX, respectively. Elemental analyses were carried out at the Chemical Materials Center of the Institute for Molecular Science. Electrochemical measurements were performed with a Hokuto Denko HAB-151 potentiostat and a Riken Denshi Co. F-72F X-Y recorder using a glassy-carbon disk working electrode $(\phi =$ 3 mm), a Pt auxiliary electrode, and an AglAg+ reference electrode purchased from BAS Co.¹¹

Preparations. cis-[Ru(bpy)₂(CO)₂](PF₆)₂ (1). An aqueous solution (50 mL) of cis- $[RuCl₂(bpy)₂]\cdot 2H₂O$ (500 mg) was heated at 140 °C under 20 atm of CO for 24 h. The solution was cooled to room temperature and filtered to remove insoluble materials. An aqueous solution of NH4- PF6 (350 mg/5 mL) was added to the filtrate, and then the mixture was kept in a refrigerator for 2 h. Pale yellow cis - $(Ru(bpy)_{2}(CO)_{2})(PF_{6})_{2}$ was collected by filtration, washed with HzO, and dried in *vacuo.* Yield: 80%. IR spectrum (KBr): ν (C=O) 2091, 2039 cm⁻¹.

 $[Ru(bpy)(trpy)(CO)](PF_6)$ ₂ (2). This complex was prepared by a procedure similar to that for cis-[Ru(bpy)₂(CO)₂](PF₆)₂ by using cis- $[RuCl(bpy)(try)]Cl(500 mg)$ in place of $[RuCl₂(bpy)₂]-2H₂O$. Yield: *ca* 80%. Anal. Calcd for C₂₆H₁₉N₅OP₂F₁₂Ru: C, 38.63; H, 2.37; N, 8.66. Found: C, 38.67; H, 2.43; N, 8.63. IR spectrum (KBr): ν (C=0) 2004 cm⁻¹. Electronic absorption spectrum: λ_{max}/n m ($\epsilon/\text{mol}^{-1}\text{-cm}^{-1}$) 264 (4.01 \times 10⁴), 284 (4.01 \times 10⁴), and 316 (3.20 \times 10⁴) in CH₃CN.

 cis [[]Ru(bpy)₂(CO)(CH₂OH)]PF₆(3). To a CH₃CN solution (10 mL) of cis -[Ru(bpy)₂(CO)₂](PF₆)₂ (200 mg) at -20 °C, an aqueous solution of NaBH₄ (20 mg/2 mL) was added under N₂ atmosphere. The mixture was allowed to stand for 2 h at -10 °C. Concentration of the resulting red solution by one-fourth gave an orange powder, which was collected by filtration and dried in vacuo. Yield: 80%. Anal. Calcd for C₂₂- $H_{19}N_4O_2PF_6Ru$: C, 42.80; H, 3.10; N, 9.07. Found: C, 42.67; H, 3.38; N, 9.14. IR spectrum (KBr): ν (C=O) 1925 cm⁻¹. ¹HNMR (270 MHz, CD₃CN): δ 4.34, 4.37, 4.45, and 4.47 (AB pattern of C*H₂OH, J_{AB} = 7.24 Hz). FAB-mass spectrum: $(M + Na)$ and $(M - PF_6)$. Electronic absorption spectrum: 248 (5.80 \times 10⁴), 282 (6.43 \times 10⁴), 346 (1.40 \times 10⁴), and 460 (7.01 \times 10³) in CH₃CN.

[Ru(bpy)(trpy)(C(O)OH)]PFcl.SH20. ACHzCICHzCIsolution (50 mL) of $[Ru(bpy)(trpy)(CO)](PF₆)₂$ (50 mg) was stirred in the presence of the solid $(CH_3)_4NOH·5H_2O$ (30 mg) for 15 h under N_2 , resulting in a deep violet solution. This mixture was filtered to remove unreacted $(CH₃)₄NOH·5H₂O.$ After the solution was concentrated to one-fifth volume under reduced pressure, diethyl ether (10 mL) was added resulting in a deep violet precipitate. This was collected by filtration and dried *in vacuo.* Yield: 50%. Anal. Calcd for C₂₆H₂₃N₅O_{3.5}PF₆Ru: C, 44.14; H, 3.28; N, 9.90. Found: C, 44.40; H, 3.75; N, 9.98. IR spectrum (KBr): ν (C=O) 1653 cm⁻¹. FAB-mass spectrum: ((M - PF₆) + H). Electronic absorption spectrum: 240 (3.73 X 1@), 282 (3.25 **X IO4),** 294 (3.61×10^4) , 318 (3.25×10^4) , and 502 (1.22×10^4) in CH₃CN.

X-ray Structure Analysis. The single crystals of **2** and 3 were obtained by diffusing diethyl ether over a $CH₃CN$ solution of 2 and 3. A yellow cubic crystal of 2 and a red prismatic crystal of 3 having approximate dimensions of $0.25 \times 0.25 \times 0.27$ mm and $0.35 \times 0.33 \times 0.21$ mm, respectively, were mounted on glass fiber with epoxy resin. Crystal data are summarized in Table 1. The reflections were collected by the θ -2 θ scan technique ($2\theta < 55^\circ$ for 2 and $2\theta < 50^\circ$ for 3) on an Enraf-Nonius CAD4-GX21 automated four-circle diffractometer with graphite-monochromatized Mo K α radiation. The 5844 and 2880 independent reflections for 2 and 3 with $|F_{\alpha}| > 3\sigma(|F_{\alpha}|)$ were used for the structure refinements. All the calculation were carried out on a Silicon Graphics IRIS indigo

 $R = \sum |F_{\rm d}| - |F_{\rm d}| / \sum |F_{\rm d}|$, $R_{\rm w} = {\sum w(|F_{\rm d}| - |F_{\rm c}|)^2 / \sum w F_{\rm o}^2}^{1/2}$.

computer system using TEXSAN.¹² The structures were solved by direct methods and expanded using Fourier techniques. Empirical absorption corrections were made using the program DIFABS,¹³ resulting in transmission factors ranging from 0.90 to 1 .I *5* for 2 and from 0.92 to 1.20 for 3. The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in idealized positions. Refinements were carried out using full-matrix least-squares procedures. The final atomic coordinates and temperature factors are available as supplementary material.

Stoichiometry of the Reaction of 2 **with OH-.** The stoichiometry of the reaction between **2** and OH- was determined by the change in the absorbance at 502 nm of the electronic absorption spectra of $CH₃CN$ solutions containing various concentrations of **2** and a methanolic solution of Bu₄NOH (3.64 \times 10⁻¹ mol L⁻¹) under the total concentration of 2.48 \times 10⁻⁴ mol L⁻¹.

Reaction of 1 and 2 with NaBH₄. A given amount $(25-200 \mu L)$ of an aqueous NaBH₄ solution (0.50 mmol L⁻¹) was added to CH₃CN solutions (1.0 mL) of 1 or 2 (25 μ mol) at -20 °C, and the solution was stirred for 30 min at that temperature. After the mixture was warmed to room temperature, it was stirred for 4 h. The amount of $CH₃OH$ formed was then determined by GC. The measurement of ¹H NMR spectra of the reaction of 1 or 2 with BH₄- was conducted after mixing a CD₃CN solution of **1** and **2** (0.6 mL) with a given amount of an aqueous solution of NaBH4 (40 μ L) at -30 °C.

Reduction of Carbon Dioxide. The reduction of carbon dioxide was carried out under controlled-potential electrolysis in a CO₂-saturated CzHsOH/HzO (8/2v/v) solution containing **1** or 2and LiCl as supporting electrolyte. This was performed in an electrolysis cell with two compartments: one for an Hg pool working electrode and an Ag|Ag⁺ reference electrode and the other for a Pt auxiliary electrode, which is separated from the working electrode by a cation-exchange membrane (Nafion film). Both compartments were connected to a volumetric flask filled with Nujol through a stainless steel tube. Test solutions were saturated with $CO₂$ by bubbling for 30 min and stirred magnetically to attain the thermal equilibrium of $CO₂$ between liquid and gaseous phases. The controlled-potential electrolysis was performed with a Hokuto Denko HA-501 potentiostat, and the electricity consumed in the electrolysis was measured with a Hokuto Denko HF-201 coulometer.

Products Analysis. Gaseous products, CO and H₂, were sampled from the gaseous phase with a pressure-locked syringe at regular intervals in the electrolysis and analyzed on a Shimadzu GC-8A gas chromatograph equipped with a 2-m column filled with Molecular Sieve $13 \times$ at 40 °C using He as a carrier gas. The amounts of $HC(O)H$ and $CH₃OH$ in the solution were determined by a Hitachi 262-50 gas chromatograph equipped with a 2-m column filled with Gaskuropack 54 at 150 °C using He as a carrier gas. The amounts of HCOOH in the solutions were measured by a Shimadzu IP-3A isotachophoretic analyzer. Carboxylic acids, H(O)CCOOH and HOCH₂COOH, were first converted to H(O)-

⁽⁸⁾ Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1978, *17,* 3334-3341.

⁽⁹⁾ Takeuchi, **K.** J.; Thompson, M. S.; Pipes, D. W.; Meyer, T. J. Inorg. Chem. 1984, 23, 1845-1851. (10) Smith, **G.;** Cole-Hamilton, D. J.; Gregory, A. C.; Gooden, N. *G.*

Polyhedron, **1982**, *1*, 97-103.
(11) The reference electrode consists of an Ag wire and a CH₃CN solution

containing AgNO₃ (0.01 mol L⁻³) and $\tilde{B}u_4NClO_4$ (0.1 mol L⁻³).

⁽¹²⁾ TEXSAN: Single Crystal Structure Analysis Software, Version 1.6 (1993). Molecular Structure Corp., The Woodlands, TX 77381.

^(1 3) DIFABS: Walker, N.; Stuart, D. Acta Crystallogr. **1983,** *A39,* 158- 166.

Figure 1. Molecular structure of $[Ru(bpy)(try)(CO)]^{2+}$ with atom labeling. Hydrogen atoms are omitted for clarity.

Table 2. Selected Bond Distances **(A)** and Angles (deg) of $\text{Ru(bpy)}(\text{trpy})(\text{CO})\text{J(PF}_6)_2$

$Ru-N1$ $Ru-N2$ $Ru-N3$	2.114(3) 2.093(3) 2.086(3)	$Ru-N5$ $Ru-C26$ $C26-O$	2.086(3) 1.844(4) 1.160(4)
$Ru-N4$ $N1-Ru-N2$ $N3-Ru-N4$	1.988(3) 77.9(1) 78.7(1)	$N4-Ru-N5$ $Ru-C26-O$	79.6(1) 175.2(3)

CCOOCH3 and HOCH2COOCH3 by treatment of the crude products with $CH₂N₂$ in diethyl ether and then analyzed on a Shimadzu GCMS-QP1000EX.

Results and Discussion

Structure of $\text{[Ru(bpy)(trpy)(CO)]}\text{ (PF}_6)_2$ **.** The molecular structure of $[Ru(bpy)(trpy)(CO)](PF_6)_2(2)$ as an analog of $[Ru (bpy)_2(CO)_2$](PF₆)₂ (1) was determined by X-ray structure analysis from the viewpoint of the reversible conversion among in H20, which play key roles in the two-electron reduction of $CO₂$. 2 was prepared by the reaction of $[RuCl(bpy)(try)]⁺$ with CO (20 atm) at 140 °C. The crystal structure of $[2]^{2+}$ is depicted in Figure 1. The selected bond distances and angles in the molecules are listed in Table 2. The Ru-C26 (1.844(4) **A)** and C26-0 (1.160(4) **A)** bond distances of **2** are shorter and longer than the Ru-C (1.865 and 1.906 **A)** and **C-O** (1.144 and 1.125 **A)** bond distances, respectively, of **1.** The short Ru-C26 and long C26-0 bond distances of **2** compared with the corresponding bond distances of 1 may reflect the $\nu(C=O)$ band at 2004 cm-I for the former and those at 2093 and 2039 cm-1 for the latter.6 $[1]^{2+}$, $[Ru(bpy)_2(CO)(C(O)OH]^+$, and $[Ru(bpy)_2(CO)(CO_2)]$

Reaction of 2 with Nucleophiles. A variety of hydroxycarbonyl complexes have been prepared by reactions of cationic carbonyl complexes with water and hydroxyl ion .¹⁴ Although the equilibria
among [1]²⁺, [Ru(bpy)₂(CO)(C(O)OH)]⁺, and [Ru(bpy)₂(CO)- $(n¹-CO₂)$] in H₂O (eqs 1 and 2) are easily monitored by the characteristic electronic absorption spectra, the aqueous solution of **2** did not show any spectral changes in H20 up to pH 13. By contrast, addition of a methanolic solution of Bu4NOH (5.98 **X** 10-5-2.39 **X** 10-4 mol **L-I)** to a CH3CN solution of **2** (2.39 **x** 104 mol **L-1)** results in an appearance of an absorption band at 502 nm in the electronic absorption spectrum, and the absorbance of the band increased with increasing amounts of OH- (Figure 2). The 502-nm band completely disappeared by addition of CF₃-

wave length (nm)

Figure 2. Electronic absorption spectra of $[Ru(bpy)(trpy)(CO)](PF_6)_2$ $(2.39 \times 10^{-4} \text{ mol L}^{-1})$ in CH₃CN in the presence of various concentration of Bu₄NOH: 0 (a); 5.98 \times 10⁻⁵ mol L⁻¹ (b); 1.20 \times 10⁻⁴ mol L⁻¹ (c); 1.79×10^{-4} mol L^{-1} (d); 2.39 $\times 10^{-4}$ mol L^{-1} (e).

COOH to the solution. The change in the absorbance at the 502-nm band of the $CH₃CN$ solutions containing various concentrations of 2 and a methanolic solution of Bu₄NOH with a total concentration of 2.48×10^{-4} mol L⁻¹ (continuous variation method) demonstrated the 1:l adduct formation (eq 3) but did

$$
[Ru(bpy)(trpy)(CO)]^{2+} + OH^- \rightleftharpoons
$$

 $[Ru(bpy)(trpy)(C(O)OH)]^{+}$ (3)

 $[Ru(bpy)(trpy)(C(O)OH)]^+ + OH^- \rightleftharpoons$

 $[Ru(bpy)(trpy)(CO₂)] + H₂O (4)$

not give an evidence for a 1:2 stoichiometry (eq 4) in CH₃CN/ CH30H. **In** accordance with this, the I3C NMR spectrum for the 1:1 mixture of 2 in CD_3CN and a methanolic solution of Bu₄NOH showed a new signal at δ 208 assigned to the hydroxycarbonyl carbon of **[Ru(bpy)(trpy)(C(O)OH)]+** *(eq* 3) $(\delta$ 205 for $[Ru(bpy)₂(CO)(C(O)OH)]⁺)$.⁶ The lack of a signal assigned to the CO₂ carbon of $[Ru(bpy)(try)(CO₂)]$ (eq 4) in the presence of excess of Bu4NOH indicates that dissociation of the hydroxycarbonyl proton of **[Ru(bpy)(trpy)(C(O)OH)]+** (eq 4) is negligible in CH_3CN/CH_3OH . Concentration of the CH₃-CN/CH30H solution of the 1:l mixture of **2** and Bu4NOH resulted in precipitation of deep violet [Ru(bpy)(trpy)(C(O)- OH)]PF₆ (ν (C=O) 1634 cm⁻¹) together with a small amount of $2 (v(C=O) 2004 cm^{-1})$. On the other hand, the IR spectrum of the products obtained by the reaction of 2 with a solid of $(CH_3)_4$ - $NOH (2.6 molar excess)$ in $CH₃CN$ showed two new strong bands at 1464 and 1281 cm⁻¹ in addition to the ν (C=O) band of [Ru- $(bpy)(try)(C(O)OH)]PF₆$ at 1634 cm^{-1.15} From the comparison of the IR spectrum of $[Ru(bpy)₂(CO)(\eta¹-CO₂)] (\nu(CO₂)$ 1428, 1213 cm^{-1} ,⁶ the 1464- and 1281-cm⁻¹ bands are reasonably assigned to $\nu(CO_2)$ bands of $[Ru(bpy)(trpy)(\eta^1-CO_2)]$. Attempts to separate **[Ru(bpy)(trpy)(C(O)OH)]+** and [Ru(bpy)(trpy)- $(CO₂)$] from the crude products were unsuccessful. Quantitative regeneration of **2** by dissolution of the reaction products into H20 also suggested the formation of both complexes in the reaction of **2** with (CH3)4NOH in CH3CN **(eqs** 3 and 4). The extent of the dissociation of the hydroxycarbonyl proton of $[Ru(bpy)(try)$ -(C(O)OH)]+ *(eq* 4) appears to depend **on** the solvents, since the reaction of 2 with solid (CH₃)₄NOH in CH₂ClCH₂Cl afforded a pure PF_6 salt of $[Ru(bpy)(trpy)(C(O)OH)]^+$.

Similar to 1, the catalytic ability of 2 in electrochemical $CO₂$ reduction is inferred by analogy with the reversible conversion among COz, COOH, and CO **on** the Ru atom (eqs 3 and 4).

⁽¹⁴⁾ *Electrochemical and Electrocatalytic Reactions of Carbon Dioxide;* Sullivan, B. P., Krist, K., Guard, **H.** E., Eds.; Elsevier Science Publishers BV: Amsterdam, 1993; p 19-67.

⁽¹⁵⁾ The ν (C=O) band of 2 completely disappeared in the IR spectrum of the crude product.

Figure 3. Yields of CH₃OH in the reaction of $[Ru(bpy)_2(CO)_2](PF_6)_2$
(Δ), $[Ru(bpy)(try)(CO)](PF_6)_2$ (O), and $[RuL_2(CO)_2](PF_6)_2$ ($L =$ dppe and dmpe) (\Box) with various amounts of NaBH₄ in CH₃CN/H₂O.

Although multi-electron reduction of $CO₂$ by homogeneous catalysts has not been reported so far, it may become feasible if the carbonyl ligands of **1** and **2** are reduced without fission of the Ru-CO bond. It is well-known that a cationic Re-carbonyl complex¹⁶ is stepwise reduced to formyl, hydroxymethyl, and methyl complexes by BH4-. In addition, **Os,17** Fe,18 Ir,19 Mo, and **WZO** formyl complexes are also reduced to methyl derivatives by treatments with various hydride donors. So, the reduction of the carbonyl ligands of **1** and **2** by BH4- was conducted. An aqueous solution of N aBH₄ was allowed to react with 1 and 2 at -20 °C for **30** min, and then the mixture was further stirred at room temperature for **4** h. GC analysis of the resulting solution revealed the formation of $CH₃OH$. The yield of $CH₃OH$ increased with increasing the amount of BH_4 used. Especially, the carbonyl ligand of 2 is quantitatively reduced to CH₃OH by treatment with 4 equiv of BH₄⁻ generating $[Ru(bpy)(trpy)(CH_3CN)]^{2+}$, while the carbonyl ligand of 1 is reduced to CH₃OH in a 10% yield under the same reaction conditions (Figure **3).** Thus, the carbonyl ligand of **2** is much more subject to reduction than that of **1.** The 1H NMR spectrum of the **1** : 1 mixture of **1** and NaBH4 in CD_3CN/H_2O (15:1 v/v) at -20 °C showed a new signal at 13.9 ppm, which disappeared at 5 °C. After the reaction mixture was warmed to room temperature, an AB pattern $(J_{AB} = 7.24)$ Hz) of methylene protons of $\left[\text{Ru(bpy)}_2(\text{CO})(\text{CH}_2\text{OH})\right]\text{PF}_6(3)$ (see below) emerged. These results indicate that **1** undergoes successive reduction by BH_4^- to afford $[Ru(bpy)_2(CO)(CHO)]^+$ and $[Ru(bpy)₂(CO)(CH₂OH)]⁺$. The signal at 13.9 ppm observed at low temperature, therefore, is reasonably assigned to the formyl proton of $[Ru(bpy)₂(CO)(CHO)]^{+.21}$ In addition, the reaction of 3 with 2 equiv of $NabH_4$ in CH_3CN/H_2O for 4

- **(1 8)** Lapinte, C.; Astruc, D. *J. Chem. Soc., Chem. Commun.* **1983,430-43 1. (19)** (a) Thorn, D. L.; Tulip, T. H. *Organometallics* **1982,1,1580-1586. (b)**
- Thorn, D. L. *Organometallics* **1982,** *1,* **197-204;** *J. Am. Chem. SOC.* **1980,102, 7109-71 10.**
- **(20)** Treichel, **0.** M.; Shubkin, R. L. *Inorg. Chem.* **1967,** *6,* **1328-1334.**

Figure 4. Molecular structure of $\text{[Ru(bpy)_2(CO)(CH_2OH)]}^+$ with atom labeling. Hydrogen atoms are omitted for clarity.

h produced CH30H in a **9%** yield. It is, therefore, concluded that 3 is the precursor to CH₃OH. Similarly, the ¹H NMR spectrum of the 1:1 mixture of 2 and NaBH₄ in CD₃CN/H₂O at **-30** OC also showed a new signal at **14.0** ppm assignable to the formyl proton of $[Ru(bpy)(trpy)(CHO)]^+$ by analogy with the reaction of 1 with BH₄⁻. The formyl proton signal slowly weakened in intensity at -20 °C and almost disappeared at -10 \degree C, suggesting that $\left[\text{Ru(bpy)}(\text{trpy})\right](CHO)\right]+$ is much more labile than **[Ru(bpy)z(CO)(CHO)]+inCH3CN/H20.** Although **3** was isolated in the reaction of 1 with BH_{4}^- , $(Ru(bpy)(try)(CH_{2}^-)$ OH)]+ was not confirmed in careful measurement of temperatureand time-dependent IH NMR spectra of the mixture of **2** with BH_4^- in CD_3CN/H_2O . The quantitative generation of CH_3OH and **[Ru(bpy)(trpy)(CH3CN)I2+** in the reaction of **2** with **4** equiv of BH4- (Figure **3)** may, therefore, be explained by a rapid reaction

of
$$
[Ru(bpy)(trpy)(CH_2OH)]^+
$$
 with proton (eq 5). It is worthy $[Ru(bpy)(trpy)(CH_2OH)]^+ + H^+ \rightarrow [Ru(bpy)(trpy)(CH_3CN)]^{2+} + CH_3OH$ (5)

to note that the reaction of $[Ru(dppe)₂(CO)₂](PF₆)₂$ (dppe = 1,2-bis(diphenylphosphino)ethane) and $\left[\text{Ru(dmpe)}\right]$, (CO)₂ $\left[\text{PF}_6\right]$ ₂ (dmpe = **1,2-bis(dimethylphosphino)ethane)** with BH4- produce $[Ru(dppe)₂(CO)(CHO)]$ ⁺ and $[Ru(dmpe)₂(CO)(CHO)]$ ⁺,²² but **no** CH3OH was formed in those reactions even in the presence of large excess of BH₄⁻ (Figure 3).

We have isolated hydroxymethyl complex 3 as the precursor to CH3OH in the reaction of **1** with **1.5** equiv of BH4-. Although Re,16 **Os,''** Fe,18 and Ir19 hydroxymethyl complexes have been characterized so far, the molecular structure by X-ray analysis has been determined only for $[Ir(H)(PMe₃)₄(CH₂OH)]PF₆.^{19a}$ The X-ray structure analysis of 3 reveals the octahedral coordination geometry with four nitrogen atoms of two bpy ligands and two carbon atoms of carbonyl and hydroxymethyl ligands as shown in Figure **4.** The selected bond distances and angles in the molecules are listed in Table **3.** The large thermal ellipsoids of carbon and oxygen atoms **(C21, C22,01,02)** of carbonyl and

⁽¹⁶⁾ (a) Sweet, J. **R.;** Graham, W. A. G. *J. Am. Chem.* **Soc. 1982, 104,** 2811–2815; J. Organomet. Chem. 1973, 173, C9–C12. (b) Casey, C. P.;
Andrews, M. A.; McAlister, D. R.; Jones, W. D.; Harsey, S. G. J. Mol.
Catal. 1981, 13, 43–59. (c) Casey, C. P.; Andrews, M. A.; McAlister,
D. R.; Rinz, J. C. **P.;** Andrews, M. A.; McAlister, D. R. *J. Am. Chem. Soc.* **1979,101, 3371-3373.** (e) Casey, C. P.; Andrews, M. A.; Rinz, J. *E. J. Am. Chem. SOC.* **1979, 101, 741-743.**

⁽¹⁷⁾ May, C. J.; Graham, W. A. G. *J. Organomet. Chem.* **1982,234, C49 c51.**

⁽²¹⁾ The 13C NMR spectrum of mixture of **1** and **1** equiv of NaBH, in CD3- $CN/H₂O$ at -20° C showed carbonyl carbon at δ 205 and formyl carbon at 6 **269.**

⁽²²⁾ (a) Smith, G.; Cole-Hamilton, D. J.; Thornton-Pett, M. Hursthouse, M. B. *J. Chem. Soc.. Dalton Trans.* **1983,2501-2507.** (b) Barratt, D. S.; Glidewell, C.; Cole-Hamilton, D. J. *J. Chem. Soc.. Dalton Trans.* **1988, 1079-108 1.**

Table 3. Selected Bond Distances **(A)** and Angles (deg) **of** $[Ru(bpy)₂(CO)(CH₂OH)]PF₆$

$Ru-N1$	2.125(6)	$Ru-C21$	1.85(1)
$Ru-N2$	2.058(6)	$Ru-C22$	2.09(1)
$Ru-N3$	2.151(6)	C21-O1	1.11(1)
$Ru-N4$	2.073(6)	$C22-O2$	1.30(1)
$N1-Ru-N2$	78.2(2)	$Ru-C21-O1$	170(1)
$N3-Ru-N4$	77.4(2)	Ru-C22-O2	108.4(8)

hydroxymethyl ligands may be due to the disorder between these two sites or around the Ru-C21 and Ru-C22 bonds. The Ru-C-O angle $(Ru-C22-C2 108.4(8)°)$ is an indication of the coordination to Ru with the sp³ hybrid carbon of the hydroxymethyl group. The Ru-CH₂OH bond distance (Ru-C22 = 2.09 -(1) \hat{A}) is longer than the Ru-CO bond distance (Ru-C21 = **1.85(** 1) **A).** Furthermore, the long Ru-C22 bond distance of the Ru-CHzOH moiety of **3** compared with those of the Ru-COz (2.06(1) **A)** and Ru-C(0)OCH3 (2.042(6) **A)** ones for [Ru- $(bpy)_2(CO)(\eta^1-CO_2)$ and $[Ru(bpy)_2(CO)(C(O)OCH_3)]^+$, respectively,⁶ may also reflect the bond characters of those Ru-C bonds. Other bond distances and angles of the bpy ligands are similar to those in other ruthenium complexes containing those ligands.^{6,23}

Reduction of Carbon Dioxide. The cyclic voltammogram (CV) of 1 shows an irreversible two-electron reduction wave at -1.35 and -1.40 V *vs* Ag|Ag⁺ at 20 °C and -20 °C, respectively, in CH3CN under N2 (solid lines in Figure 5a,b). **On** the basis of the fact that the irreversible two-electron reduction of **1** at room temperature results from the spontaneous Ru-CO bond cleavage,5 **1** still readily loses CO upon two-electron reduction even at -20 ^oC. The CV of 2 at 20 ^oC displays an almost reversible $[Ru(bpy)(trpy)(CO)]^{2+/+}$ redox couple $(E_{pc} = -1.39$ and $E_{pa} =$ -1.31 V) in the potential range of -1.0 to -1.6 V (Figure 5c). When the potential range is expanded to -1.9 V, one cathodic (-1.69 **V)** and twoanodicwaves (-1.46and-1.20V) newlyappear in addition to the $[Ru(bpy)(trpy)(CO)]^{2+/+}$ couple (a solid line in Figure 5c). The weak anodic waves at -1.46 and -1.20 V presumably arise from an ECE process, since both the $[Ru(bpy)(trpy)(CO)]^{2+/+}$ ($E_{pc} = -1.41$ and $E_{pa} = -1.33$ V) and the $[Ru(bpy)(try)(CO)]^{+/0}$ $(E_{pc} = -1.76$ and $E_{pa} = -1.62$ V) redox couples clearly emerge at –20 °C, and the –1.46 and –1.20 V anodic waves completely disappear in the CV of **2** at that temperature (Figure 5d). The appearance of the [Ru(bpy)- (trpy)(CO)]^{+/0} couple at -20 $^{\circ}$ C indicates that the Ru-CO bond of $[Ru(bpy)(trpy)(CO)]^0$ is maintained at least in the CV time scale. The CVs of 1 and 2 in CO₂-saturated CH₃CN exhibit catalytic currents due to the reduction of $CO₂$ at potentials more negative than -1.6 V at 20 °C (dotted lines in Figure 5a,c). Thus, both complexes have the ability to catalyze electrochemical $CO₂$ reduction.

The controlled-potential electrolysis of 2 at -1.60 V in CO₂saturated DMF/H_2O (2:8 v/v, pH 9) at room temperature produced CO, HCOOH, and H_2 with current efficiencies (η) of 35,30, and 20%, respectively, and a trace amount of CH30H **(7** $= 0.4\%$) was formed in the electrolysis. A green solid, however, gradually precipitated after about 80 C passed in the electrolysis. The stability of the catalyst in the electrochemical $CO₂$ reduction was improved in less protic solvents; the electrochemical CO₂ reduction by 2 in CO_2 -saturated EtOH/H₂O (8:2 v/v) at -1.70 V at room temperature also gave CO, HCOOH, and H₂ with a small amount of CH₃OH ($\eta = 0.3\%$), but no precipitate was observed during the electrolysis. Although electrochemical reduction of C02 in the presence of **2** at room temperature afforded only a trace amount of $CH₃OH$ as the six-electron reduction product, the same reduction conducted at -20 °C produced a

Figure 5. Cyclic voltammograms of $[Ru(bpy)_{2}(CO)_{2}](PF_{6})_{2}$ (2.05 \times 10^{-3} mol L⁻¹) (a and b) and $\left[\text{Ru(bpy)(trpy)(CO)}\right]\left(\text{PF}_6\right)_2$ (2.01 \times 10⁻³ mol L⁻¹) (c and d) in CH₃CN under N_2 (solid lines) and \tilde{CO}_2 atmosphere (dotted lines).

Figure 6. Plots of the amounts of $CO(\Delta)$, $HCOOH(\Box)$, $HC(O)H(\Diamond)$, CH₃OH (∇) , CH(O)COOH (0), and CH₂(OH)COOH (0) *us* the electricity consumed in the reduction of $CO₂$ by $[Ru(bpy)(trpy)(CO)]$ - $(PF_6)_2$ under the controlled-potential electrolysis.

variety of reduction products such as HC(O)H, H(O)CCOOH, HOCH₂COOH, and CH₃OH in addition to CO and HCOOH (Figure 6). Furthermore, the electrochemical ${}^{13}CO_2$ reduction by 2 under similar conditions gave H(O)¹³C¹³COOH and HO¹³- $CH₂$ ¹³COOH (determined as $H(O)¹³C¹³COO¹²CH₃$ and $HO¹³$ -CH₂¹³COO¹²CH₃, respectively, by GC-mass). Thus, 2 has the ability to catalyze four- and six-electron reduction of $CO₂$ accompanied by carbon-carbon bond formation as the first example in homogeneous electrochemical reduction of $CO₂$. The electronic absorption spectrum of the electrolyte after reoxidation of the final solution at **-0.5** V was almost consistent with that of the initial solution, and the IR absorption spectrum of the reaction

^{(23) (}a) Tanaka, H.; Tzeng, B.-C.; Nagao, H.; Peng, S.-M.; Tanaka, K.
Organometallics 1992, 11, 3171-3172. (b) Tanaka, H.; Nagao, H.;
Tanaka, K. Inorg. Chem. 1992, 31, 1971-1973.

residue also showed the strong $\nu(C=0)$ band of 2. Thus, 2 is regenerated in the catalytic cycle of the present CO₂ reduction. On the other hand, neither $CH₃OH$, $HC(O)H$, $H(O)CCOOH$, nor HOCH₂COOH was produced at all under the similar electrochemical reduction of $CO₂$ by 1 at -20 °C, and only CO and HCOOH were formed similar to the catalyzed reduction at $20 °C$.

Possible Mechanism of COz Reduction by 2. The reactions of 1 and 2 with BH_4^- in CH_3CN/H_2O produce CH_3OH , and both complexes catalyze electrochemical two-electron reduction of CO₂ affording CO and HCOOH at room temperature. By analogy to the reactivity of **1** and 2 toward OH- (eqs **1-4),** the twoelectron reduction of COz by 2 is inferred to proceed *via* [Ru-**7)** similar to the reaction mechanism by **l.5** The remarkable $(bpy)(try)(CO₂)$ and $\lbrack Ru(bpy)(try)(C(O)OH)\rbrack$ ⁺ (eqs 6 and

 $[Ru(bpy)(trpy)(CO)]^{2+} + 2e^- + CO_2 \rightarrow$ $[Ru(bpy)(trpy)(CO₂)] + CO (6)$

 $[Ru(bpy)(trpy)(CO₂)] + HCOOH (7)$ $[Ru(bpy)(trpy)(C(O)OH)]^{+} + 2e^{-} + H^{+} + CO_{2} \rightarrow$

difference between **1** and 2 in the multi-electron reduction of $CO₂$ at low temperature may be ascribed to the lability of [Ru- $(bpy)_2(CO)_2$ ⁰ and the stability of $[Ru(bpy)(try)(CO)]$ ⁰ at -20 °C. As expected from the reaction of 2 with BH₄⁻ at -20 °C, [Ru(bpy)(trpy)(CHO)]+ is likely to be generated in the reaction of $[Ru(bpy)(try)(CO)]^0$ with proton. To confirm this, 2 was reduced by 1.9 equiv of a THF solution of sodium acenaphthylenide in CD₃CN at -20 °C, and then 1 equiv of H₂O was added to the solution at that temperature. The 'H NMR spectrum of the solution at -20 °C showed a new broad peak centered at 6 1 **3.7.z4** Although the chemical shift of the signal slightly differs from that of the formyl proton of $[Ru(bpy)(try)(CHO)]^+$ (δ 14.0, prepared by the reaction of 2 with BH_4^- , the δ 13.7 signal may be assigned to the formyl proton by attributing a paramagnetic shift to a contaminant such as [Ru(bpy)(trpy)(CO)]+ in the solution. Furthermore, the δ 13.7 signal observed at -20 ^oC completely disappeared at -10 ^oC. Such thermal lability of the complex also supports the formation of $\lceil Ru(bpv)(trov) - h\rceil$ (CHO) ⁺ in the reaction of $\lceil Ru(bpv)(trv)(CO)\rceil^0$ with a proton

at -20 °C (eq 8). It has been suggested that alkali metal ions
\n
$$
[Ru(bpy)(trpy)(CO)]^0 + H^+ \rightarrow [Ru(bpy)(trpy)(CHO)]^+
$$
\n(8)

interact with carbonyl ligands in highly reduced organometallic complexes.2s The reaction of eq 8 , therefore, may proceed *uio* protonation of the electron-rich carbonyl oxygen of [Ru(bpy)- $(trpy)(CO)]⁰$, affording a kind of a hydroxyalkylidyne [Ru(bpy)-(trpy)(COH)]+, and a subsequent isomerization to the formyl complex [Ru(bpy)(trpy)(CHO)]+.3,26 We cannot, however,

exclude another reaction path such as protonation of Ru(0) giving a seven-coordinated hydride Ru(I1) complex, followed by a hydride migration to carbonyl carbon. The similar treatment of **1** with 2 equiv of sodium acenaphthylenide and then 1 equiv of $H₂O$ at -20 °C did not show any signals assignable to the formyl proton around **14** ppm in the 'H NMR spectrum. These results indicate that the reaction of the two-electron reduced form of 2 with proton is equivalent to that of 2 with hydride. On the other hand, the two-electron reduction of **1** readily causes the Ru-CO bond cleavage as expected from the irreversible cathodic wave in the CV of 1 at -20 °C. Thus, $\text{[Ru(bpy)(trpy)(CHO)]}^+$ is considered to be the key compound in the multi-electron reduction ofCOzby2. Thereductionof **[Ru(bpy)(trpy)(CHO)]+inprotic** media will afford HC(0)H or **[Ru(bpy)(trpy)(CHzOH)]+,** the latter of which is the possible precursor to CH₃OH. Alternatively, carboxylation of $[Ru(bpy)(trpy)(CHO)]^+$ and $[Ru(bpy)(trpy)$ - $(CH₂OH)⁺$ possibly gives $H(O)CCOOH$ and $HOCH₂COOH₂$. respectively. The participation of $[Ru(bpy)(try)(CO)]^0$ and [Ru(bpy)(trpy)(CHO)]+ in the catalytic cycle of the electrochemical reduction of $CO₂$ by 2 at -20 °C reasonably explains the formation of $HC(O)H, CH₃OH, H(O)CCOOH,$ and $HOCH₂$ -COOH, as shown in Scheme **1.** The lack of the capability of **2** in the multi-electron reduction of $CO₂$ at room temperature, therefore, is ascribed to the thermal lability of [Ru(bpy)(trpy)- (CO) ^o. The view that protonation of the carbonyl ligand for the two-electron reduced form of 2 and the reduction of the carbonyl ligand of 2 by hydride gave the same product may provide a new catalytic system for the electrochemical reduction of both $CO₂$ and CO by homogeneous catalysts.

Acknowledgment. We thank Assistant Professor Hideki Masuda of Nagoya Institute of Technology for his advice on the X-ray structure analysis. This work was supported by a Grantin Aid for Science Research No. **03453105** from the Ministry of Education.

Supplementary Material Available: For **1** and 3, tables of atomic coordinates and thermal parameters and bond lengths and angles and **ORTEP** drawings with atomic labeling **(22** pages). Ordering information is given on any current masthead page.

⁽²⁴⁾ In the absence of H20, the formation of [Ru(bpy)(trpy)(CHO)]+ was not confirmed in the 'H NMR spectrum of CD3CN/THF solution containing **2** and **1.8 equiv** of sodium acenaphthylenide.

⁽²⁵⁾ Ellis, **J. E.;** Stein, B. K.; Frerichs, **S.** R. *J. Am. Chem.* **SOC.** *1993,115,* **4066-4075.**

^{(26) (}a)Nicholas,K.M.Organomefallics1982,1,1713-1715.(b)Nevinger, L. R.; Keister, J. B.; Maher, J. *Organometallics* **1990.** *9,* **1900-1905.**

⁽²⁷⁾ HOCHlCOOH was also produced by direct reduction of H(0)CCOOH on a glassy-carbon electrode at **-1.70 V** in EtOH/H,O at **-20** *OC.*